algebra
Аннотация к рабочей программе по алгебре 7 класса
Рабочая программа по алгебре для 7 класса составлена на основе следующих нормативных документов:
- Федерального базисного учебного плана для основного общего образования, утвержденного приказом Минобразования РФ № 1312 от 09. 03. 2004;
- основной образовательной программы основного общего образования МБОУ «СОШ № 15»;
- авторской программы по алгебре Ю.Н.Макарычев, Н.Г. Миндюк, соответствующей Федеральному компоненту Государственного стандарта общего образования (Программа образовательных учреждений 7-9 классы /авт-сост.Т.А. Бурмистрова. Москва «Просвещение» 2014г.)
- учебника для образовательных учреждений алгебра 7 класс, входящий в федеральный перечень, рекомендованных(допущенных) Министерством образования к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования на 2017/2018 учебный год, утвержденным Приказом МО РФ №576 от 08.06. 2015 г
Согласно базисному учебному плану на изучение алгебры в 7 классе отводится 3 часа в неделю, всего 102 часа
Цели и задачи курса:
üовладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования в средней школе и профессиональных учебных заведениях;
üинтеллектуальное развитие, формирование качеств личности, свойственных математической деятельности: ясности и точности мысли, логического мышления, способности к преодолению трудностей;
üпомочь приобрести опыт планирования деятельности, решения разнообразного класса задач курса, в том числе, требующих поиска путей и способов решения, ясного, точного, грамотного изложения своих мыслей в устной и письменной речи.
Задачи курса:
· повторить и закрепить знания, умения и навыки, полученные в 5-6 классах: вычислительные навыки, умения решать уравнения с одним неизвестным и др. познакомиться с понятиями выражения, тождественного преобразования выражений, научиться тождественно, преобразовывать выражения;
· научить решать линейные уравнения;
· сформировать понятие функции, линейной функции, научить строить функции, изучить свойства функций ;
· вводится определение степени и ее свойства, понятие одночлена, абсолютной и относительной погрешности. Изучить алгоритм разложения многочлена на множители, вырабатывается умение применять формулы сокращенного умножения;
· дать знания по решению систем линейных уравнений;
· ознакомить с элементами теории вероятностей и комбинаторики.
Требования к математической подготовке учащихся 7 класса
В результате изучения алгебры ученик должен
знать/понимать
• существо понятия математического доказательства; примеры доказательств;
• существо понятия алгоритма; примеры алгоритмов;
• как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;
• как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
• смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
• формулы сокращенного умножения;
уметь
• составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
• выполнять основные действия со степенями с натуральными показателями, с одночленами и многочленами; выполнять разложение многочленов на множители; сокращать алгебраические дроби;
• решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений с двумя переменными;
• решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
• определять координаты точки плоскости, строить точки с заданными координатами, строить графики линейных функций и функции у=х2;
• находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
• определять свойства функции по ее графику; применять графические представления при решении уравнений и систем;
• описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизнидля:
• выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
• моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
• описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
• интерпретации графиков реальных зависимостей между величинами.
Аннотация к рабочей программе по алгебре 8 класса
Рабочая программа по алгебре для 8 класса к учебнику Ю.Н. Макарычева, Н.Г. Миндюк и др.; под ред. С.А. Теляковского составлена на основе федерального компонента Государственного стандарта основного общего образования и примерной программыобщеобразовательных учреждений по алгебре 7–9 классов составитель Т.А. Бурмистрова – М: «Просвещение», 2013, учтены методические рекомендации по организации учебного процесса в 2017-2018 учебном году.
Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает распределение учебных часов по разделам курса.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; элементы комбинаторики, теории вероятностей, статистики и логики.В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметикапризвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
В курсе алгебры 8 классавырабатывается умение выполнять тождественные преобразования рациональных выражений; систематизируются сведения о рациональных числах и даётся представление об иррациональных числах, расширяется тем самым понятие о числе; вырабатывается умение выполнять преобразования выражений, содержащих квадратные корни; вырабатываются умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач; знакомятся учащиеся с применением неравенств для оценки значений выражений, вырабатывается умение решать линейные неравенства с одной переменной и их системы; вырабатывается умение применять свойства степени с целым показателем в вычислениях и преобразованиях формируются начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Цели обучения
§ овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
§ интеллектуальное развитие,формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
§ формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
§ воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
§ развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.
В ходе освоения содержания курса учащиеся получают возможность:
· развить представления о числе и роли вычислений в человеческой практике;
· сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
· овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
· изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
· получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
· развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
· сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Аннотация к рабочей программе по алгебре 9 класса
Рабочая программа по алгебре составлена на основе федерального образовательного стандарта и Программы для общеобразовательных учреждений: Алгебра. 7-9 кл./ Сост. Т.А. Бурмистрова - Москва, «Просвещение» 2014 г
Рабочая программа опирается на УМК:
- Алгебра: учебник для 9 класса общеобразовательных учреждений. Составители: .Макарычев Ю. Н. и др., 2014.
- Дидактические материалы по алгебре.9 класс. / Ю.Н. Макарычев, Н.Г. Миндюк, Л.М. Короткова. / М: Просвещение, 2014
При составлении рабочей программы учтены рекомендации инструктивно-методического письма «О преподавании математики в 2017-2018 учебном году в общеобразовательных учреждениях».
Цели:
· овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
· интеллектуальное развитие,формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
· формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
· воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Задачи:
Развитие:
· Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
· Математической речи;
· Сенсорной сферы; двигательной моторики;
· Внимания; памяти;
· Навыков само и взаимопроверки.
Формированиепредставлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
· Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
· Волевых качеств;
· Коммуникабельности;
· Ответственности.
Данная рабочая программа составлена для изучения алгебры по учебнику Макарычева Ю. Н. и др. «Алгебра: учебник для 9 класса общеобразовательных учреждений», 2014. В программу включены все рекомендуемые темы для 9 класса. Рабочая программа рассчитана на 102 часа: 3 часа в неделю. В течение года планируется провести 8 контрольных работ, также запланировано 3 самостоятельные работы и 5 тестовые работы (пробное ОГЭ). В начале года 3 часа отведено на повторение материала алгебры 8 класса и входящего контрольного среза. Часы взяты из итогового повторения в конце года, таким образом, на него отведен не 21, а 18 часов.
При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей их реализацией.
Основные типы учебных занятий:
· урок изучения нового учебного материала;
· урок закрепления и применения знаний;
· урок обобщающего повторения и систематизации знаний;
· урок контроля знаний и умений.
Основным типом урока является комбинированный.
Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные.
На уроках используются такие формы занятий как:
· практические занятия;
· консультация;
· лекция.
Формы контроля:текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 45 минут, а итоговая на 90 минут, тестов и самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием .
Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся:
- после изучения наиболее значимых тем программы,
- в конце учебной четверти,
- в конце полугодия.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ
знать/понимать
· существо понятия математического доказательства; примеры доказательств;
· существо понятия алгоритма; примеры алгоритмов;
· как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
· как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
· как потребности практики привели математическую науку к необходимости расширения понятия числа;
· вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
· смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
· составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
· выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
· применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
· решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
· решать линейные и квадратные неравенства с одной переменной и их системы;
· решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
· изображать числа точками на координатной прямой;
· определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
· распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
· находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
· определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
· описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
· моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
· описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
· интерпретации графиков реальных зависимостей между величинами.
ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
Уметь
· проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
· решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;
· находить частоту события, используя собственные наблюдения и готовые статистические данные;
· находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизнидля:
· выстраивания аргументации при доказательстве и в диалоге;
· распознавания логически некорректных рассуждений;
· записи математических утверждений, доказательств;
· решения учебных и практических задач, требующих систематического перебора вариантов;
· сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления моделей с реальной ситуацией;
· понимания статистических утверждений.